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Abstract
Rock-wallabies (Petrogale spp.) are one of Australia’s most speciose genera of mammals, 
irregularly distributed across much of the continent and its offshore islands. The 25 taxa 
in the genus Petrogale  (17 species and 8 subspecies) have specialised  ecological require-
ments that render them  vulnerable to numerous threats. Many rock-wallaby populations 
have declined severely, and most species and subspecies are experiencing ongoing declines 
in population size, distribution and their conservation status. Despite an explicit recogni-
tion of the need for conservation management, some species are not monitored and a con-
sensus on the most appropriate methods for ongoing population monitoring has proven elu-
sive. We reviewed the available literature to understand the conservation issues and threats 
most relevant to Petrogale spp. We also reviewed rock-wallaby monitoring programs with 
the aim of identifying which are most informative of population trends, and most suitable 
for guiding better management responses. Major threats to rock-wallabies include preda-
tion by introduced cats and foxes, competition from introduced herbivores and overabun-
dant native herbivores, changed fire regimes and loss of genetic diversity. There are syner-
gisms that exacerbate these threats. While live-trapping gives comprehensive population 
data, camera traps have proven popular for collecting data over long periods, have mini-
mal animal welfare impacts, and can simultaneously collect data on some significant co-
occurring threats (feral predators and herbivores). A variety of rock-wallaby monitoring 
programs are current in Australia, but few adequately provide the range of data necessary 
for informed conservation. Monitoring programs should consider incorporating multiple 
methods to ensure the range of information necessary for successfully conserving rock-
wallabies is obtained.
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Introduction

Australia’s terrestrial mammal fauna is the world’s most distinctive (Holt et al. 2013). Per-
sistent isolation from other land masses has helped generate extraordinary levels of end-
emism, with approximately 87% of species found only on the continent (Woinarski et al. 
2014). Linked with this isolation and endemism are inherent vulnerabilities to a range of 
novel threats (Woinarski et  al. 2015). A significant proportion of species have declined 
since European colonisation and approximately one-third of global mammal extinctions 
over the past 400 years have occurred in Australia (Woinarski et  al. 2015). This nation-
wide deterioration of biodiversity is ongoing (Woinarski et al. 2015) and occurring against 
a backdrop of inadequate monitoring of threatened species, meaning the declines of many 
species remain poorly quantified (Scheele et al. 2019).

Among the most speciose of Australia’s endemic mammal radiations are the rock-wallabies 
(Petrogale spp.), a group of 25 taxa (17 species and 8 subspecies) broadly distributed across 
the continent (Eldridge et al. 2010; Potter et al. 2014) (Fig. 1a). Most species are allopatric 
and have restricted geographic ranges (Eldridge 2008). Rock-wallabies have unique morpho-
logical, ecological and behavioural adaptations tailored towards exploiting rocky outcrops that 
make them spatially restricted within broader distributions (Eldridge 2008). They are also 
relatively sedentary with limited daily ranging movements (Eldridge et al. 2001; Piggott et al. 
2005). These traits of specialised ecology, and restricted ranges are frequently associated with 
vulnerability to decline and extinction (Gaston 1998). Although no extinctions of rock-walla-
bies have been documented since European colonisation, many taxa within the group face sig-
nificant threats and are declining in distribution and abundance (Woinarski et al. 2014). Of 16 
species whose conservation status has been assessed by the International Union for Conserva-
tion of Nature (IUCN), five are currently considered Least Concern, five as Near Threatened, 
three as Vulnerable and three as Endangered (Table 1). Population trend information given 
in the IUCN Red List (IUCN 2020) indicates that no species are considered to be increasing, 
only two species are considered stable, seven species are undergoing continuing decline and 
seven species have unknown trends. This is indicative of a lack of, or inadequate, monitoring 
for many of the taxa, and the need for ongoing conservation management intervention coupled 
with assessments of the success of such management. 

Declines and extinctions among Australia’s modern mammals generally commenced in the 
south, reaching the north by the 1960s and somewhat coinciding with the expansion of feral 
predators and pastoralism, and interruption of Indigenous land management (Woinarski et al. 
2011, 2015). Among rock-wallabies, McCallum (1997) suggested there was a north–south 
gradient in the status of rock-wallabies with southern species and populations under threat, 
while northern taxa were secure. However, ongoing revisions of taxonomy and conservation 
status have meant this pattern no longer holds. Six of seven species or subspecies now listed as 
Endangered or Critically Endangered under the Federal Environment Protection and Biodiver-
sity Conservation Act 1999 (EPBC Act) occur in northern Australia (P. coenensis, P. concinna 
concinna, P. concinna canescens, P. concinna monastria. P. lateralis kimberleyensis and P. 
persephone) (Fig. 1b, Table 1). Almost all southern and central Australian taxa are Vulner-
able, but so is one northern taxon (P. sharmani) (Fig. 1b, Table 1).

Rock-wallabies are a subject of ongoing scientific interest (Eldridge 2011). Their conserva-
tion hinges on many of the same factors pertinent to the broader Australian mammal fauna 
(Woinarski et al. 2014, 2015). However, the specialised ecology of rock-wallabies means that 
threats may interact and affect rock-wallabies in unique ways (Pearson and Kinnear 1997). 
Conversely, the rugged nature of their habitat ameliorates some threats (e.g. protection from 
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intense late season fires, reduced grazing pressure from livestock) that have led to losses of 
native mammal species in surrounding less rugged areas (Gibson and Cole 1996).

There has been a long and prominent history of monitoring of some rock-wallaby species 
as a key mechanism to demonstrate the outcomes of threat management, particularly control 
of a main predator, the introduced red fox Vulpes vulpes (Kinnear et al. 1988, 1998, 2010; 
Sharp et al. 2014). The evidence built on such monitoring of conservation success has led to 
long-term and large-scale fox-baiting programs.

Ongoing taxonomic revisions (Potter et al. 2014; Eldridge and Potter 2019), and the declin-
ing conservation status for Petrogale spp., warrant an examination of the available literature to 
summarise current knowledge and identify gaps in conservation actions and monitoring. Fur-
thermore, we aimed to review which monitoring methods have been most effective for deter-
mining changes in their conservation status, so rock-wallaby populations can best be tracked to 
avoid further declines.

Methods

We used Web of Science, Scopus and Google Scholar search engines to identify publica-
tions focused on ecology, genetics, conservation and monitoring of Petrogale taxa. Using 
the search terms ‘Petrogale’ and ‘rock-wallaby’, we identified relevant literature published 
between 1960 and 2020 (March). We searched reference lists of primary sources, and 
viewed materials citing primary and secondary sources. Duplicates were removed in R (R 

Fig. 1  a Distributions of 25 Petrogale taxa (17 species and 8 subspecies), in Australia. The dotted line 
surrounding light grey shading in the west of the map encompasses all scattered populations of P. later-
alis lateralis; b north–south distributions of Petrogale taxa EPBC Act conservation status. Each of the 25 
bars represents the approximate latitudinal distribution of a distinct species or subspecies; pink = Critically 
Endangered (CR), orange = Endangered (EN), yellow = Vulnerable (VU), green = not listed, grey = recently 
recognised P. wilkinsi. Distributional data were generated from Potter et al. (2014), Commonwealth of Aus-
tralia (2020), and IUCN (2020).
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Core Team 2018) using revtools (Westgate 2019). We then screened results for eligibil-
ity by manually examining titles and abstracts and eliminating literature focused solely on 
parasitology, anatomy, palaeontology, genetic sequencing methods, animal husbandry, and 
introduced populations in Hawaii and New Zealand. Results included articles published as 
peer reviewed papers, books, and grey literature.

We manually classified the primary and secondary research foci of each publication in 
our final list into topics corresponding to: ecology (behaviour, diet, distribution, habitat and 
habitat modelling, home range, reproduction); conservation (conservation status, manage-
ment, recovery planning, reintroduction, threats, and translocation); genetics (population, 
ecological and evolutionary genetics, systematics and taxonomy, phylogeography); and 
monitoring (methods for establishing presence-absence, and estimating abundance).

Results

Our database searches located 611 papers. We excluded 264 papers because they were not 
directly focussed on Petrogale spp. or because they were focussed on topics outside the 
focus of this review (e.g. parasitology and animal husbandry). After applying filters, our 
final dataset contained 344 papers. The primary research foci of these were ecology (145), 
conservation (115), genetics (69) and monitoring (16) (Fig. 2). Studies focused on a single 
species were strongly biased towards three species: Petrogale lateralis (77); P. penicillata 
(95); and P. xanthopus (53) (Fig. 2). Eleven of 25 taxa had been the primary research foci 
in only four or fewer publications (Fig.  2). One species (P. godmani) featured in phylo-
genetic publications that focused on multiple Petrogale taxa; however, we were unable to 
locate any publications that were explicitly focused on this species.

Threats

Fifty papers in our literature review included a detailed focus on threats to rock-wallaby 
conservation. Key threats identified were: predation by introduced predators (foxes Vulpes 
vulpes, and cats Felis catus); competition from over-abundant introduced herbivores (e.g. 
Capra aegagrus hircus) and native herbivores (e.g. Osphranter robustus); reduced genetic 
diversity; and unsuitable fire regimes.

Predation

Predation by foxes and cats is a leading driver of extinction and decline in Australian mam-
mals (Woinarski et al. 2015). Our literature review revealed 121 papers with mention of 
foxes and/or cats as a major threat for rock-wallabies. Across southern parts of Australia 
where foxes were reportedly most common, they were considered to be the primary threat 
to rock-wallabies and numerous studies clearly demonstrated their impacts (Kinnear et al. 
1988; McCallum 1997; Pearson and Kinnear 1997; Sharp 2002; Pearson 2013). In the 
Western Australian Wheatbelt region, foxes were responsible for the extirpation of P. later-
alis lateralis colonies (Kinnear et al. 1988) and have caused a ‘landscape of fear’ in surviv-
ing populations that limits foraging distances from shelter (Pentland 2014). Sighting ratios 
of Rothschild’s rock-wallaby on islands without foxes and those with foxes were 62:1, 
and after fox control, sightings increased by almost 26 times (Kinnear et al. 2002). In the 
Coturaundee and Gap Ranges, New South Wales, foxes were baited around P. xanthopus 
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xanthopus colonies between 1995 and 1998. Subsequent monitoring revealed that popula-
tions of rock-wallabies increased by an estimated 600% after baiting before plateauing in 
1998 (Sharp 2002).

Feral cats pose a well recognised predation threat to Australian mammals including 
rock-wallabies (Woinarski et al. 2015). In more southern parts of Australia, fox baiting can 
release cats from competition and enable them to become a primary driver of rock-wallaby 
decline (Kinnear et al. 2017). Numerous studies have documented predation of Petrogale 
spp. by feral cats (Woolley et  al. 2019). Hair from P. lateralis centralis was recorded in 
the stomach of a feral cat in the Northern Territory’s West MacDonnell Ranges (Paltridge 
et al. 1997). In the Anangu Pitjantjatjara Yankunytjatjara Lands in arid Central Australia, 
a feral cat was shot at the carcass of a freshly killed P. lateralis centralis and remains were 
found in the stomachs of another four individuals (Read et al. 2018). The authors postu-
lated these were examples of cats directly preying on rock-wallabies during a season of 
food stress, rather than scavenging carrion (Read et  al. 2018). Evidence of predation by 
feral cats on rock-wallabies also has been documented for P. assimilis (Spencer 1991), 
P. persephone (Eldridge 2012), P. rothschildi (Anderson et al. 2021), and inferred for P. 
penicillata (Doherty et al. 2015). Woolley et al. (2019) incorporated published and unpub-
lished records of cat predation or consumption on P. purpureicollis, P. rothschidli, and P. 

Fig. 2  Rock-wallaby publications and topics of study: a divided into the primary topics of genetics, ecol-
ogy, conservation and monitoring per species; and b Venn diagram depicting overall research focus for lit-
erature included in the review. Circles depict primary research topics, and overlaps represent secondary 
topics that are shared between primary topics
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xanthopus. Using camera traps, the Northern Territory Government’s Department of Envi-
ronment and Natural Resources recorded images of a cat killing an adult eastern short-
eared rock-wallaby (P. wilkinsi, mean adult body mass 3 kg) (Dahlstrom 2019).

The predation pressure on young rock-wallabies that disrupts recruitment appears to be 
the key mechanism that drives declines (Spencer 1991; Sharp et al. 2006, 2014; Ward et al. 
2011a). For example, in New South Wales, low population sizes of P. xanthopus xanthopus 
were attributed to low juvenile survival rates, and following fox baiting, a marked increase 
in the proportion of juveniles and subadults occurred (Sharp et al. 2014). In South Austral-
ia’s Anangu Pitjantjatjara Yankunytjatjara Lands where foxes are rare, cats were believed 
to be the cause of similar low juvenile survival (51%) and an estimated 88% range con-
traction (Ward et  al. 2011a, b; Read et  al. 2018). In tropical north Queensland, Spencer 
1991 collected evidence indicating a single cat had killed eight Petrogale assimilis over 
a 9-month period. The animal was a significant predator on young rock-wallabies, killing 
five of 11 young at foot present in the colony.

To the best of our knowledge, the impact of dingoes or wild dogs on rock-wallaby popu-
lations has not been specifically studied and is little understood. A review of dingo diets 
(Doherty et al. 2019) found that at least seven species of rock-wallabies were consumed. 
In desert areas with no wild dog control, dingoes are potentially major predators of rock-
wallabies. For example, Ngaanyatjarra people have identified dingoes as significant preda-
tors of P. lateralis centralis in the Warburton region of Western Australia (Pearson and 
Ngaanyatjarra Council 1997). However, at least in northern Australia, dingoes occur far 
less frequently in rugged rocky areas (such as those favoured by rock-wallabies) than in 
areas with less rugged topography (Stobo-Wilson et al. 2020).

Maintaining dingo populations has been suggested as a means of limiting fox and feral 
cat populations (and hence predation of rock-wallabies) by avoiding meso-predator release 
(Finke and Denno 2004). However, any control that dingoes may exert has been insufficient 
to prevent widespread disappearance of desert rock-wallaby populations (Pearson 1992; 
Pearson and Ngaanyatjarra Council 1997). The use of the Eradicat 1080 bait (Algar and 
Burrows 2004) designed for feral cats, has resulted in effective control of feral cats, din-
goes and foxes in the Calvert Ranges of Western Australia and this resulted in a dramatic 
increase in the size of the P. lateralis lateralis population (McGilvray and Kendrick 2012, 
A. Whittington, pers. comm.). The overall predation pressure from exotic, naturalised and 
native predators needs to be considered in management actions, especially for small and 
isolated populations of rock-wallabies that are more prone to extinction.

Competition

We identified 27 papers that considered the role of competition from introduced or native 
herbivores as a significant threat for Australia’s rock-wallabies. The availability of foraging 
resources can exert strong bottom-up effects on Petrogale spp. populations (Lethbridge and 
Alexander 2008; Sharp and McCallum 2014). Competition for these resources with intro-
duced herbivores such as feral goats (Capra hircus), European rabbits (Oryctolagus cunic-
ulus), cattle (Bos taurus, B. indicus), donkeys (Equus asinus), horses (E. equus) and camels 
(Camelus dromedarius) thus represents a potential threat to rock-wallabies (Read and Ward 
2011). Feral goats are the most frequently recognised threat in this context because they 
frequent rocky habitats and have high dietary overlap with species of Petrogale. (Dawson 
and Ellis 1979; Allen 2001; Sharp and McCallum 2014; Creese et  al. 2019). However, 
direct evidence of their influence on rock-wallaby populations remains poorly documented. 
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Extensive goat control over a fifteen-year period in New South Wales failed to influence 
populations of P. xanthopus xanthopus (Sharp et al. 1999), although this may have been 
because the removal of thousands of individuals during that period resulted in no detect-
able decrease in goat numbers (Sharp et al. 1999; Sharp and McCallum 2014). A study of 
P. xanthopus xanthopus movements in the Flinders Ranges found that following the control 
of foxes and goats, wallaby home ranges decreased in size and this was attributed to the 
reduction in competition (Hayward et al. 2011).

Goats often shelter in rocky habitats by night and by day venture out to feed in the 
adjacent lowlands (Sharp and McCallum 2014). These grazing patterns can lead to the for-
mation of grazing halos around rocky habitats, where the intensity of resource consump-
tion increases with proximity to rock-wallaby colonies (Sharp and McCallum 2014). Rocky 
outcrops similarly provide ideal locations in which rabbits shelter, and build warrens, that 
presumably also leads to reduced forage around colonies of rock-wallabies (Read and Ward 
2010).

Overabundant native macropods also have impacts on rock-wallaby colonies. Euros 
(Osphranter robustus) in particular, can reach high densities in pastoral landscapes adjoin-
ing rock-wallaby habitat (Lavery et al. 2017). Although they are not spatially restricted to 
escarpments like rock-wallabies, euros increase in abundance with increasing proximity to 
these features (Sharp and McCallum 2014; Lavery et al. 2017). Dietary overlap between 
euros and P. lateralis lateralis was found to be low compared to goats and rock-wallabies, 
but probably increases when food resources are limited (Creese et al. 2019). During times 
of food stress, rock-wallabies are likely to be at a significant disadvantage because, unlike 
euros, they are less able to exploit extensive lowland habitats and must withstand increased 
competition for nutritious plants in the escarpments (Sharp and McCallum 2014). Ulti-
mately, competition from native and introduced herbivores can reduce the fitness of adult 
rock-wallabies and their ability to successfully rear young (Sharp and McCallum 2014).

Fire

Alterations to Indigenous burning regimes in Australia have caused widespread shifts from 
smaller scale patchwork burns to larger scale fires in some biomes, resulting in both direct 
and indirect impacts on native species (Legge et  al. 2008; Woinarski et  al. 2011). Stud-
ies on the specific short- and long-term consequences of altered fire regimes are gener-
ally lacking for rock-wallabies (Pearson 2013). In terms of direct consequences, instances 
where large-scale fires have caused direct mortality have been documented (e.g. Petrogale 
lateralis hacketti) (Pearson and Kinnear 1997; Pearson 2013; Piggott et  al. 2018). Fires 
in Watagan State Forest, New South Wales also caused temporary abandonment of a P. 
penicillata colony which re-established several years later (DECC 2008). However, rock 
escarpments tend to interrupt the spread of bushfires and the heavily dissected rock struc-
ture can somewhat buffer rock-wallaby populations from direct mortality (Pearson 2013; 
Piggott et al. 2018).

Like many Australian mammals, fire probably has the greatest implications for rock-
wallaby conservation indirectly though changes to habitat structure and abundances of pre-
ferred plant food species rather than via direct mortality (Telfer & Bowman 2006; Woinar-
ski et al. 2011, 2015; Tuft et al. 2012). Large fires burnt escarpment habitat for P. lateralis 
kimberleyensis, causing long-term damage to rock figs (Ficus platypoda) that provided 
important shelter and food to the species (Pearson 2013; WWF Australia & Nyikina Man-
gala Rangers 2018). Appropriate burn regimes were considered critical for conservation of 



4145Biodiversity and Conservation (2021) 30:4137–4161 

1 3

Petrogale concinna and P. wilkinsi in the monsoon tropics of northen Australia by main-
taining a diverse flora including fruit-bearing browse species, and encouraging pulses of 
resprouting grasses (Telfer and Bowman 2006). In Warrumbungle National Park, New 
South Wales fine-scale burns created patchworks of post-fire vegetation ages that opti-
mised foraging resources for P. penicillata (Tuft et al. 2012).

Genetic diversity

Genetic processes such as inbreeding depression, genetic drift, and accumulation of del-
eterious mutations can increase extinction risk and become increasingly significant when 
population sizes decrease (Eldridge et al. 1999; Gaggiotti 2003). Many Petrogale spp. exist 
as metapopulations of geographically distinct colonies inter-connected via the occasional 
dispersal of individuals (Eldridge et al. 2001; Ruykys and Lancaster 2015). These meta-
population dynamics help avoid detrimental genetic processes, so the local extinction of 
colonies can have rippling implications for subspecies and species as a whole. Ruykys and 
Lancaster (2015) and West et al. (2018) examined genetic diversity of P. lateralis centralis 
in South Australia’s Anangu Pitjantjatjara Yankunytjatjara Lands. The authors found little 
evidence of inbreeding among colonies, small-scale dispersal between colonies and large 
proportions of adults in the population producing offspring, all of which helped maintain 
high genetic diversity. When single colonies are isolated and are small, the loss of genetic 
diversity can be considerable. Eldridge et al. (1999) found P. lateralis colonies isolated on 
offshore islands (over time scales of thousands of years) comprised extremely low genetic 
diversity, and that this was likely to place them under significant risk of local extinction.

Interacting threats

Predation, competition, altered fires regimes, and reduced genetic diversity each indepen-
dently threaten rock-wallabies to varying degrees across Australia. But these factors also 
frequently interact, generating compound impacts on Petrogale spp. populations (Pearson 
and Kinnear 1997; Pentland 2014).

There is evidence to suggest that rock-wallaby populations were formerly more widely 
distributed in the landscape, contracting to rocky area refuges following the arrival of 
threats associated with European colonization (Menkhorst 1995). The presence of rocky 
landscape features is now a prerequisite for the distribution of rock-wallabies, but animals 
will nonetheless intermittently travel between outcrops and frequently venture out to for-
age in peripheral habitats (Pearson 1992; Jarman and Capararo 1997; Eldridge et al. 2001; 
Ward et  al. 2011b). Foxes and cats focus their hunting efforts at the edges of colonies, 
and cat activity deep within rocky habitats is low (Hernandez-Santin et al. 2016; Hohnen 
et al. 2016; WWF Australia and Nyikina Mangala Rangers 2018). Under these landscape-
scale patterns of predation, wallabies reduce the risks of being killed by foraging closer to 
refuges and shelter points (Tuft et al. 2011; Pentland 2014). Reducing predation pressure 
through poison baiting can restore foraging beyond refuges (Sharp 2002; Kinnear et  al. 
2010). However, sustained exposure to predation risk can also instil a pervasive fear of 
predation that persists long after the threat has been reduced. Populations therefore remain 
confined to refuges and rarely expand into adjacent habitats (Pentland 2014; Kinnear et al. 
2017).

Adjacent (non-rocky) habitats are important for providing additional resources to 
sustain healthy populations (Pearson 1992; Kinnear et  al. 1998, 2017). At levels of 
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population saturation and during good seasons, individuals move out from outcrops 
into surrounding vacant habitat and also disperse between colonies thereby maintain-
ing functional metapopulations (Norton et al. 2011). When confined solely to outcrops, 
rock-wallabies can severely overgraze, and their populations can then crash (Kinnear 
et  al. 2017). High densities of rabbits can sustain higher densities of cats and foxes 
near the rock-wallaby refuges, thus increasing the threat of predation for rock-walla-
bies (Read and Bowen 2001). Where feral herbivores (goats, rabbits) denude vegetation, 
rock-wallabies an be forced to forage further afield further exacerbating predation (Daw-
son and Ellis 1979) (Fig. 3).

Appropriate fire regimes can promote plant resources that are favoured by rock-wal-
labies, but benefits can be negated by the foraging of native or introduced herbivores 
(Tuft et al. 2012). Large-scale uncontrolled wildfires can also increase predation by cats 
and foxes, which travel long distances to target prey in the recently burnt areas where 
refuges are scarce (McGregor et al. 2014; Hradsky et al. 2017). However, this may be 
less of an issue for species of rock-wallaby that can take some refuge in topographically 
complex habitats.

Locally abundant colonies can create false perceptions that the broader status of a 
species is secure (Pearson and Kinnear 1997). However, many colonies have been extir-
pated and some remain with precariously small populations (Lim and Giles 1987; Read 
and Ward 2010). Local extirpations and gradual and cumulative range contractions are 
significant because they weaken important metapopulation dynamics and compound the 
vulnerability of species to threatening processes (Lunney et al. 1997). Moreover, effec-
tive dispersal is central to the maintenance of genetic diversity, and reduced colony con-
nectivity or colony extirpation can reduce long-term viability of species (Ruykys and 
Lancaster 2015; Piggott et al. 2018).

Fig. 3  Conceptual diagram of some of the interacting threats facing rock-wallabies. Introduced herbivores 
(rabbits) can support elevated populations of feral predators (cats and foxes). Competition (e.g. goats, rab-
bits, euros) can increase the need to forage further from refuge, increasing exposure to predation. Popula-
tion declines and losses of colonies impact metapopulation dynamics to the detriment of species persis-
tence. Predators can create a landscape of fear that cause rock-wallabies to remain among rocky outcrops. 
Predator control can lead to increased rock-wallaby numbers and overgrazing of rocky refugia
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Monitoring

We identified 16 papers with a primary or secondary focus on monitoring. The majority 
of monitoring efforts have been directed towards three species (P. lateralis, P. penicil-
lata, and P. xanthopus) that most often exist as discrete, localised colonies across well-
defined extents of habitat. As a result, our review of methods used in rock-wallaby moni-
toring reflect approaches most relevant for these discrete and localised colonies. Many of 
the rock-wallaby species and subspecies found in northern Australia instead occur with no 
apparent habitat discontinuity, and this consideration is likely to influence the effectiveness 
of the measures discussed.

Our review identified direct counts, camera traps, mark-recapture, faecal pellet counts 
and faecal DNA analysis as methods employed to monitor rock-wallaby populations 
(Table  2). Nocturnal behaviour and the predilection of rock-wallabies towards remote, 
steep and rugged terrain can mean they are difficult to observe directly and obtaining esti-
mates of population size and trends can be extremely challenging (Norton et al. 2011). As 
a result, the methods and standards of Petrogale spp. monitoring have been highly variable.

Direct counts

Ten studies used variations of directly counting individuals as a method to monitor popula-
tions. Burbidge (2008) compared direct count methods for estimating relative abundance 
(daytime searches of shelters, dusk observations, and nocturnal spotlight transects). Dusk 
observations and spotlight surveys were deemed inadequate because estimated num-
bers were markedly lower than the results of daytime searches. Moreover, spatial cover-
age achieved with dusk observations and spotlight surveys was limited. Daytime shelter 
searches provided more accurate abundance estimates but the method was problematic in 
that it disturbed resting animals, was difficult to standardise, there was high likelihood that 
individuals were regularly missed, and results were thus highly variable. The ability of this 
method to detect population changes was uncertain (Burbidge 2008).

Sharp et  al. (2006) and Norton et  al. (2011) made direct counts from a hide located 
at distance from a P. xanthopus xanthopus colony in New South Wales. Animals were 
counted during a one-hour period following dawn to take advantage of wallabies sun-
ning themselves on exposed ledges after cold winter nights. Maximum daily counts were 
averaged across winter surveys to derive a mean number of wallabies seen each season. 
Comparisons with population estimates made using mark-recapture and Jolly-Seber mod-
elling indicated this technique for direct counts provided a suitable index of population 
size (Sharp et al. 2006). However, spatial coverage was an issue and individuals moving 
out beyond the main colony into surrounding habitat were inadvertently missed leading to 
underestimates of total population size (Norton et al. 2011).

Aerial counts from helicopters have been used to monitor population trends of P. peni-
cillata and P.  xanthopus xanthopus (Lim et  al. 1992; Sharp et  al. 1999). Depending on 
the location, aerial surveys can be more cost effective than ground-based techniques, and 
negate problems associated with the inaccessible country in which rock-wallabies are found 
(Lethbridge and Alexander 2008). However, aerial detectability of rock-wallabies can vary 
widely with vegetation cover, observer experience, time of day, aircraft height and speed, 
and habitat type (Caughley 1974; Lethbridge and Alexander 2008). Diurnal aerial surveys 
invariably miss a substantial proportion of these primarily nocturnal species that shelter 
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during the day in caves and crevices. Moreover, the noise from helicopters can elicit a shel-
tering response in P. penicillata that may cause them to be missed in counts (NPWS 2002). 
To cater for these variables and the significant proportion of animals that can be missed, a 
correction factor is often applied to aerial surveys (e.g. × 4.6, Hayward et al. 2011).

Mark‑recapture

Mark-recapture methods can provide robust means to monitor populations and estimate 
abundance (Krebs 1999). We identified nine studies that used this method of monitoring. 
For Petrogale spp., mark-recapture methods demand considerable effort to trap and mark 
animals with ear tags (Sharp et  al. 2006; Sharp and McCallum 2010; Bluff et  al. 2011; 
Willers et  al. 2011), colour-coded collars (Robinson et  al. 1994), or passive integrated 
transponder (PIT) tags (Bluff et  al. 2011). There are important welfare considerations 
associated with trapping Petrogale spp. due to their risk of death from capture myopathy 
(Vogelnest and Woods 2008; West et  al. 2016). Furthermore, mark–recapture studies of 
rock-wallabies can be complicated because of relatively low and highly variable rates of 
trapping success, and trap success may decline to impractical levels as population density 
diminishes. At two P. xanthopus xanthopus colonies in New South Wales success varied 
between 0.08 unmarked individuals per trap night at one colony, and 0.008 per trap night 
at a second colony (Norton et al. 2011). Approximately 0.006 unmarked individuals were 
caught per trap night at a small P. penicillata colony in Victoria (Bluff et al. 2011). Trap-
ping of P. lateralis centralis at two sites in the Anangu Pitjantjatjara Yankunytjatjara Lands 
returned results of 0.06–0.15 new animals per trap night (Ward et al. 2011a).

Vernes et al. (2011) developed a mark-recapture protocol without the need to capture 
animals and generated accurate abundance estimates of P. penicillata. Rock shelter habi-
tats were surveyed with SLR cameras, binoculars and spotting scopes. Wallabies were 
photographed and sketched, and natural markings such as colour patterns and scars were 
used to develop individual animal profiles. The method enabled identification of 91.7% 
of wallaby sightings and generated consistent population estimates using Schumacher and 
Schnabel method (Krebs 1999), and counts of minimum number of animals known to 
be alive (Vernes et al. 2011). Estimating abundance across four sites incorporated a total 
time commitment of approximately 37 h to identify and resight wallabies, spread out over 
10-day period and divided between four colonies. Capture-recapture methods using the 
Schumacher and Schnabel method are less suitable for long-term monitoring because they 
assume a closed population and require short time periods over which animals are assigned 
an identity and resighted (Vernes et al. 2011). Counts must therefore be constrained to dis-
crete episodes such that each can conform to the closed population assumption. At one site 
where habitat was more complex, clearly viewing wallabies became challenging and new 
individuals were still being detected late in the sampling period. This led to wide confi-
dence limits for abundance estimates (Vernes et al. 2011). This technique is only likely to 
be useful with very small, discrete populations due to issues with visually identifying and 
separating individuals.

Camera traps

Seven of the studies in our literature review employed camera traps for monitoring, pri-
marily for detecting presence/absence, or to generate relative abundance indices (usually 
number of photograph events per 100 camera trap nights). Camera traps provide the added 
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benefits of generating temporal activity profiles that can be used to guide the timing of 
additional data collection (Gowen and Vernes 2014). However, relative abundance indices 
do not account for variability in detection probabilities and can be inconsistent temporally 
and spatially (Sollmann et al. 2013).

The calculation of abundance estimates from camera traps has thus far relied on indi-
vidual recognition either via deliberately marking animals (West et al. 2016), or recognis-
ing natural markings (Gowen and Vernes 2014). Marking individuals with ear tags or col-
our coded collars is entirely feasible for reintroduction trials (West et al. 2016), but difficult 
with wild animals because of low and variable trapability and accompanied by risks to the 
health of study animals via capture myopathy (Norton et al. 2011).

Gowen and Vernes (2014) used camera traps with a different approach to estimate col-
ony size. Multiple cameras were placed at distance from the colony to encompass non-
overlapping views of the rock faces. Time lapse settings were used to capture simultane-
ous images every 10 min. Data from all cameras were then used to estimate the minimum 
number of animals known to be alive. The method generated an accurate population size 
estimate for a small colony (estimated four individuals) that was adequately covered by 
the numbers and positions of camera traps deployed (Gowen and Vernes 2014). However, 
results across the four colonies surveyed were variable and the estimated number of indi-
viduals was 32.5% lower than estimates derived from mark-recapture methods (Vernes 
et  al. 2011). This approach is also likely implausible for colonies that occupy larger, 
less clearly defined habitat extents such as the extensive rock plateaus found in northern 
Australia.

Faecal pellet counts

Our literature review identified four studies that used pellet counts as a monitoring method. 
Rock-wallabies produce distinctive faecal pellets that usually preserve well, are easy to 
locate, and can be readily distinguished from those of other macropod genera (Jarman and 
Capararo 1997; Telfer et al. 2006). Mean pellet counts thus provide a suitable technique to 
determine Petrogale spp. presence/absence and, in some situations, an index of colony of 
size (Norton et al. 2011; Ward et al. 2011b). Faecal pellet counts can also provide detailed 
representation of temporal and spatial habitat use (Jarman and Capararo 1997; Norton 
et al. 2011).

When multiple Petrogale spp. co-occur regionally (e.g. P. concinna, P. brachyotis and 
P. burbidgei), differentiating between species is challenging. In addition, information on 
abundance is problematic because defecation and decomposition rates are largely unavaila-
ble and can vary with climate and weather (Norton et al. 2011). Nonetheless, regular moni-
toring of fixed faecal pellet plots can determine whether populations are stable, increasing 
or decreasing (Jarman and Capararo 1997; Norton et al. 2011). Faecal pellet counts aiming 
to estimate abundance or population trends require recurrent sampling of many quadrats to 
generate robust data. Moreover, rigid sampling periodicity or time calibration is important 
to avoid variable accumulation and decomposition periods affecting interpretation of the 
data (Norton et al. 2011).

Faecal DNA

We identified four studies that employed faecal DNA for population monitoring. Non-inva-
sive sampling of faecal DNA has proven useful for monitoring P. penicillata in New South 
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Wales (Piggott et al. 2005, 2018). The method can follow a mark-recapture protocol with 
sampling of faecal pellets spaced appropriately to reasonably cover a colony and repeated 
over flexible intervals of days to months. Population estimates generated by Piggott et al. 
(2018) were consistent with those from pellet counts, and the authors demonstrated addi-
tional major advantages for monitoring. Individual animals could be identified and profiled 
using their DNA, enabling the demographics of colonies and sex ratios to be understood 
and tracked along with population trends. Furthermore, genetic diversity could be assessed 
allowing an understanding of broader metapopulation dynamics beyond the colony, and 
long-term viability of the colony to be assessed.

One drawback for this method is that the quality and quantity of faecal DNA pro-
duced varies between individuals and this can introduce biases whereby some animals are 
detected more frequently than others (Piggott et  al. 2005). Moreover, the consumables, 
expertise and time needed for processing and analysing DNA is currently expensive. Most 
importantly, most subsequent attempts to repeat the protocol of (Piggott et al. 2005, 2018) 
have failed to produce consistent results. The use of faecal DNA analysis for monitoring 
rock-wallabies is thus not recommended at present.

Additional considerations

The standard of rock-wallaby monitoring in Australia has been variable, largely focussed 
on three species, and for many species has been below the average quality of monitoring 
for Australian threatened mammals (Scheele et al. 2019). Moreover, few studies have stipu-
lated the survey effort necessary to detect either presence-absence or significant population 
changes with confidence. Because many Petrogale spp. exist as large, patchy metapopu-
lations, collaboration across government jurisdictions can be an integral part of effective 
monitoring. Consistently managing and sharing monitoring data and reporting between 
organisations, and maintaining appropriate legislative support across jurisdictions are 
likely to be especially important (Ward et al. 2011b; Woinarski 2018; Lindenmayer et al 
2020).

Discussion

Thirteen (out of 25) rock-wallaby taxa are classified as threatened under Australia’s Envi-
ronment Protection and Biodiversity Conservation Act 1999. These are distributed across 
the country and include both southern, central and northern threatened taxa.

Research and monitoring has been heavily biased toward P. lateralis, P. penicillata, and 
P. xanthopus. For 11 species we were able to encounter only four or fewer publications 
and we were unable to encounter any research with an explicit focus on one of those spe-
cies (P. godmani). This taxonomic research bias also incorporates geographic and ecologi-
cal biases. Petrogale lateralis, P. penicillata, and P. xanthopus are primarily distributed in 
southern parts of Australia and tend to occupy discrete rocky outcrops. In contrast, rock-
wallabies with limited research attention tend to be distributed in northern Australia, and 
many occupy larger, less clearly defined habitat extents such as extensive rock plateaus. 
Limited research may thus reflect the occurrence of these taxa in less easily defined colo-
nies, in more difficult to access regions of Australia. Greater focus on these taxa is much 
needed and in a monitoring context will reveal novel insights and challenges in addition to 
those identified via studies focused on more discrete habitats.
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The value and importance of close Indigenous involvement and guidance in rock-wal-
laby monitoring and conservation has long been recognised and could provide a means 
to overcome knowledge gaps for data deficient northern taxa (Pearson and Ngaanyatjarra 
Council 1997). Ethno-ecological knowledge is deep for many species and can greatly com-
plement and extend scientific approaches (Telfer and Garde 2006). Furthermore, at least 
52% of Australia is Indigenous land, or lands under Indigenous land use agreements (Ren-
wick et  al. 2017), and a large proportion of land on which Petrogale spp. occur is thus 
managed by Indigenous organisations. It is clearly essential that rock-wallaby monitoring 
protocols should be co-developed with leadership and guidance from Indigenous commu-
nities, and where possible be designed to match the strengths, capabilities and skills of 
landowners and managers. The incorporation of multiple methods conducted in tandem 
will strengthen monitoring protocols, and also ensure a range of complimentary data are 
available for use by different organisations, personnel, and skill sets.

The range of threats to rock-wallabies identified in our literature review were those more 
widely considered pivotal in the decline of Australian mammals since European colonisa-
tion (introduced predators, herbivores and changed fire regimes). However, the specialised 
ecology of rock-wallabies means these threats interact to affect rock-wallabies in specific 
ways. Although rock-wallabies are associated with rocky landscape features, threats in the 
surrounding lowland habitats are also important.

Of the range of techniques employed for monitoring rock-wallabies, no method was 
clearly most suitable for gathering the range of data needed to accurately track populations 
and inform management. Successful monitoring requires a clear understanding of purpose 
(e.g. assessing the impact of threats, maintenance of genetic variation, the response to man-
agement actions such as predator control) and sufficient sampling to provide relevant data.

A key constraint of the available options used to date is that they predominantly estab-
lish the presence or absence of rock-wallabies. Presence-absence monitoring across many 
discrete colonies will highlight distributional change, but these data are generally not 
suitable for following changes in the sizes of populations, nor for revealing demographic 
parameters including juvenile recruitment, survivorship, or breeding success that provide 
indications about stability and persistence of populations. Each of the monitoring meth-
ods identified in this review had considerable limitations and for the foreseeable future, 
detailed rock-wallaby monitoring will require the deployment of multiple complementary 
methods.

Some rock-wallaby species have been the beneficiaries of substantial management 
investment; others have been largely neglected. Given there is much commonality in 
ecological requirements and threats across rock-wallaby species, there is much opportu-
nity to more broadly apply management practices that have been found successful at local 
scale to populations elsewhere. Monitoring management efficacy is crucial to enable such 
extrapolation with confidence, and more monitoring, and more consistent and insightful 
approaches to monitoring of rock-wallaby populations will help prioritise those species and 
populations that most require management. National coordination of protocols and sharing 
of monitoring data for Australia’s rock-wallabies would be highly beneficial. The continued 
development and coordination of monitoring must pivot on close and respectful collabora-
tions between Indigenous people, government, private conservation agencies, and private 
land-holders, to harness respective strengths and skills and improve rock-wallaby conserva-
tion and associated social benefits.
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